Identification of cytochrome P-450 1A (CYP1A) genes from two teleost fish, toadfish (Opsanus tau) and scup (Stenotomus chrysops), and phylogenetic analysis of CYP1A genes.
نویسندگان
چکیده
Cytochrome P-450-mediated responses to environmental challenges are well known in diverse animal taxa, but the evolution of the complex gene superfamily coding for these enzymes is poorly understood. Here we report a phylogenetic analysis of the cytochrome P-450 1A (CYP1A) genes including two new sequences determined from teleost fish, toadfish (Opsanus tau) and scup (Stenotomus chrysops). Degenerate PCR primers were used to amplify a 1.2 kbp fragment from liver cDNA. The toadfish PCR product was used as a probe to identify a full-length CYP1A clone from a toadfish liver cDNA library. The entire coding region of the scup CYP1A was obtained by rapid amplification of cDNA ends (RACE) using specific primers based on the sequence of the partial PCR product. The predicted protein sequences for toadfish and scup CYP1A shared 78% and 83% amino acid identity with rainbow trout CYP1A1 respectively. Amino acid identity with mammalian CYP1A proteins ranged from 51 to 60% for 505 aligned positions. Phylogenetic analysis of four teleost fish CYP1A genes (trout, toadfish, scup and plaice) and 12 mammalian CYP1A genes suggests a monophyletic origin of the teleost genes, with the trout gene being most divergent, and indicates three distinct groupings: mammalian 1A1, mammalian 1A2, and fish 1A. This supports the idea that the gene duplication event which gave rise to CYP1A1 and CYP1A2 occurred after the divergence of the lines leading to mammals and fish. These results establish a molecular phylogeny within the CYP1A subfamily, the first such detailed phylogenetic analysis within a cytochrome P-450 family.
منابع مشابه
Metabolism of the aryl hydrocarbon receptor agonist 3,3',4,4'-tetrachlorobiphenyl by the marine fish scup (Stenotomus chrysops) in vivo and in vitro.
The metabolism of the polychlorinated biphenyl congener 3,3',4,4'-tetrachlorobiphenyl (TCB) was examined in vitro and in vivo in the marine fish scup (Stenotomus chrysops). Untreated scup liver microsomes catalyzed metabolism of TCB with an estimated KM of 0.7 microM, at a rate < or = 0.13 pmol/min/mg. Metabolism was NADPH-dependent and inhibited by cytochrome c and CO, indicating cytochrome P4...
متن کاملCytochrome P-450 isozymes and monooxygenase activity in aquatic animals.
The roles of different forms of cytochrome P-450 in activation and deactivation of toxic chemicals, synthesis and breakdown of steroid hormones, and other functions, indicate the significance of these enzymes. Monooxygenase systems have been studied in species from several phyla of aquatic organisms. However, cytochrome P-450, the dominant catalyst in xenobiotic monooxygenase activity, is best ...
متن کاملOxidative inactivation of cytochrome P-450 1A (CYP1A) stimulated by 3,3',4,4'-tetrachlorobiphenyl: production of reactive oxygen by vertebrate CYP1As.
Microsomal cytochrome P-450 1A (CYP1A) in a vertebrate model (the teleost fish scup) is inactivated by the aryl hydrocarbon receptor agonist 3,3',4,4'-tetrachlorobiphenyl (TCB). Here, the mechanism of CYP1A inactivation and its relationship to reactive oxygen species (ROS) formation were examined by using liver microsomes from scup and rat and expressed human CYP1As. In vitro inactivation of sc...
متن کاملOxidative Inactivation of Cytochrome P-450 1A (CYP1A) Stimulated by 3,39,4,49-Tetrachlorobiphenyl: Production of Reactive Oxygen by Vertebrate CYP1As
Microsomal cytochrome P-450 1A (CYP1A) in a vertebrate model (the teleost fish scup) is inactivated by the aryl hydrocarbon receptor agonist 3,39,4,49-tetrachlorobiphenyl (TCB). Here, the mechanism of CYP1A inactivation and its relationship to reactive oxygen species (ROS) formation were examined by using liver microsomes from scup and rat and expressed human CYP1As. In vitro inactivation of sc...
متن کاملMolecular cloning of CYP1A from the estuarine fish Fundulus heteroclitus and phylogenetic analysis of CYP1 genes: update with new sequences.
Since we published a phylogenetic analysis of the CYP1A subfamily in 1995, several additional full-length sequences have been reported, including three members of an entirely new subfamily, CYP1B. Two avian sequences were recently published, so that CYP1A sequence data are now available from three of the five major vertebrate lineages. The two new branches that have been added to the CYP1 famil...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 308 ( Pt 1) شماره
صفحات -
تاریخ انتشار 1995